3.1.96 \(\int \cot (c+d x) (a+i a \tan (c+d x))^{3/2} \, dx\) [96]

Optimal. Leaf size=79 \[ -\frac {2 a^{3/2} \tanh ^{-1}\left (\frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {a}}\right )}{d}+\frac {2 \sqrt {2} a^{3/2} \tanh ^{-1}\left (\frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {2} \sqrt {a}}\right )}{d} \]

[Out]

-2*a^(3/2)*arctanh((a+I*a*tan(d*x+c))^(1/2)/a^(1/2))/d+2*a^(3/2)*arctanh(1/2*(a+I*a*tan(d*x+c))^(1/2)*2^(1/2)/
a^(1/2))*2^(1/2)/d

________________________________________________________________________________________

Rubi [A]
time = 0.12, antiderivative size = 79, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 24, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.250, Rules used = {3635, 3561, 212, 3680, 65, 214} \begin {gather*} \frac {2 \sqrt {2} a^{3/2} \tanh ^{-1}\left (\frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {2} \sqrt {a}}\right )}{d}-\frac {2 a^{3/2} \tanh ^{-1}\left (\frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {a}}\right )}{d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Cot[c + d*x]*(a + I*a*Tan[c + d*x])^(3/2),x]

[Out]

(-2*a^(3/2)*ArcTanh[Sqrt[a + I*a*Tan[c + d*x]]/Sqrt[a]])/d + (2*Sqrt[2]*a^(3/2)*ArcTanh[Sqrt[a + I*a*Tan[c + d
*x]]/(Sqrt[2]*Sqrt[a])])/d

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 3561

Int[Sqrt[(a_) + (b_.)*tan[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[-2*(b/d), Subst[Int[1/(2*a - x^2), x], x, Sq
rt[a + b*Tan[c + d*x]]], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 + b^2, 0]

Rule 3635

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(3/2)/((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[2*
(a^2/(a*c - b*d)), Int[Sqrt[a + b*Tan[e + f*x]], x], x] - Dist[(2*b*c*d + a*(c^2 - d^2))/(a*(c^2 + d^2)), Int[
(a - b*Tan[e + f*x])*(Sqrt[a + b*Tan[e + f*x]]/(c + d*Tan[e + f*x])), x], x] /; FreeQ[{a, b, c, d, e, f}, x] &
& NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0]

Rule 3680

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[b*(B/f), Subst[Int[(a + b*x)^(m - 1)*(c + d*x)^n, x], x, Tan[e + f*x
]], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && EqQ[A*b + a*B,
 0]

Rubi steps

\begin {align*} \int \cot (c+d x) (a+i a \tan (c+d x))^{3/2} \, dx &=(2 i a) \int \sqrt {a+i a \tan (c+d x)} \, dx+\int \cot (c+d x) (a-i a \tan (c+d x)) \sqrt {a+i a \tan (c+d x)} \, dx\\ &=\frac {a^2 \text {Subst}\left (\int \frac {1}{x \sqrt {a+i a x}} \, dx,x,\tan (c+d x)\right )}{d}+\frac {\left (4 a^2\right ) \text {Subst}\left (\int \frac {1}{2 a-x^2} \, dx,x,\sqrt {a+i a \tan (c+d x)}\right )}{d}\\ &=\frac {2 \sqrt {2} a^{3/2} \tanh ^{-1}\left (\frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {2} \sqrt {a}}\right )}{d}-\frac {(2 i a) \text {Subst}\left (\int \frac {1}{i-\frac {i x^2}{a}} \, dx,x,\sqrt {a+i a \tan (c+d x)}\right )}{d}\\ &=-\frac {2 a^{3/2} \tanh ^{-1}\left (\frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {a}}\right )}{d}+\frac {2 \sqrt {2} a^{3/2} \tanh ^{-1}\left (\frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {2} \sqrt {a}}\right )}{d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [B] Both result and optimal contain complex but leaf count is larger than twice the leaf count of optimal. \(201\) vs. \(2(79)=158\).
time = 1.25, size = 201, normalized size = 2.54 \begin {gather*} \frac {e^{-3 i (c+d x)} \left (\frac {a e^{2 i (c+d x)}}{1+e^{2 i (c+d x)}}\right )^{3/2} \left (1+e^{2 i (c+d x)}\right )^{3/2} \left (4 \sinh ^{-1}\left (e^{i (c+d x)}\right )+\sqrt {2} \left (\log \left (1-e^{i (c+d x)}\right )-\log \left (1+e^{i (c+d x)}\right )+\log \left (1-e^{i (c+d x)}+\sqrt {2} \sqrt {1+e^{2 i (c+d x)}}\right )-\log \left (1+e^{i (c+d x)}+\sqrt {2} \sqrt {1+e^{2 i (c+d x)}}\right )\right )\right )}{\sqrt {2} d} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Cot[c + d*x]*(a + I*a*Tan[c + d*x])^(3/2),x]

[Out]

(((a*E^((2*I)*(c + d*x)))/(1 + E^((2*I)*(c + d*x))))^(3/2)*(1 + E^((2*I)*(c + d*x)))^(3/2)*(4*ArcSinh[E^(I*(c
+ d*x))] + Sqrt[2]*(Log[1 - E^(I*(c + d*x))] - Log[1 + E^(I*(c + d*x))] + Log[1 - E^(I*(c + d*x)) + Sqrt[2]*Sq
rt[1 + E^((2*I)*(c + d*x))]] - Log[1 + E^(I*(c + d*x)) + Sqrt[2]*Sqrt[1 + E^((2*I)*(c + d*x))]])))/(Sqrt[2]*d*
E^((3*I)*(c + d*x)))

________________________________________________________________________________________

Maple [B] Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 230 vs. \(2 (62 ) = 124\).
time = 0.77, size = 231, normalized size = 2.92

method result size
default \(-\frac {\sqrt {\frac {a \left (i \sin \left (d x +c \right )+\cos \left (d x +c \right )\right )}{\cos \left (d x +c \right )}}\, \sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \left (2 i \sqrt {2}\, \arctan \left (\frac {\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {2}}{2}\right )+i \arctan \left (\frac {1}{\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}}\right )-2 \sqrt {2}\, \arctanh \left (\frac {\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right ) \sqrt {2}}{2 \cos \left (d x +c \right )}\right )-\ln \left (\frac {\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right )-\cos \left (d x +c \right )+1}{\sin \left (d x +c \right )}\right )\right ) \sin \left (d x +c \right ) a}{d \left (i \sin \left (d x +c \right )+\cos \left (d x +c \right )-1\right )}\) \(231\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(d*x+c)*(a+I*a*tan(d*x+c))^(3/2),x,method=_RETURNVERBOSE)

[Out]

-1/d*(a*(I*sin(d*x+c)+cos(d*x+c))/cos(d*x+c))^(1/2)*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(2*I*2^(1/2)*arctan(1
/2*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*2^(1/2))+I*arctan(1/(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2))-2*2^(1/2)*ar
ctanh(1/2*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)/cos(d*x+c)*2^(1/2))-ln(((-2*cos(d*x+c)/(1+cos(d*x+c)
))^(1/2)*sin(d*x+c)-cos(d*x+c)+1)/sin(d*x+c)))*sin(d*x+c)/(I*sin(d*x+c)+cos(d*x+c)-1)*a

________________________________________________________________________________________

Maxima [A]
time = 0.53, size = 107, normalized size = 1.35 \begin {gather*} -\frac {\sqrt {2} a^{\frac {3}{2}} \log \left (-\frac {\sqrt {2} \sqrt {a} - \sqrt {i \, a \tan \left (d x + c\right ) + a}}{\sqrt {2} \sqrt {a} + \sqrt {i \, a \tan \left (d x + c\right ) + a}}\right ) - a^{\frac {3}{2}} \log \left (\frac {\sqrt {i \, a \tan \left (d x + c\right ) + a} - \sqrt {a}}{\sqrt {i \, a \tan \left (d x + c\right ) + a} + \sqrt {a}}\right )}{d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)*(a+I*a*tan(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

-(sqrt(2)*a^(3/2)*log(-(sqrt(2)*sqrt(a) - sqrt(I*a*tan(d*x + c) + a))/(sqrt(2)*sqrt(a) + sqrt(I*a*tan(d*x + c)
 + a))) - a^(3/2)*log((sqrt(I*a*tan(d*x + c) + a) - sqrt(a))/(sqrt(I*a*tan(d*x + c) + a) + sqrt(a))))/d

________________________________________________________________________________________

Fricas [B] Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 357 vs. \(2 (60) = 120\).
time = 0.47, size = 357, normalized size = 4.52 \begin {gather*} \sqrt {2} \sqrt {\frac {a^{3}}{d^{2}}} \log \left (\frac {4 \, {\left (a^{2} e^{\left (i \, d x + i \, c\right )} + {\left (d e^{\left (2 i \, d x + 2 i \, c\right )} + d\right )} \sqrt {\frac {a^{3}}{d^{2}}} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}}\right )} e^{\left (-i \, d x - i \, c\right )}}{a}\right ) - \sqrt {2} \sqrt {\frac {a^{3}}{d^{2}}} \log \left (\frac {4 \, {\left (a^{2} e^{\left (i \, d x + i \, c\right )} - {\left (d e^{\left (2 i \, d x + 2 i \, c\right )} + d\right )} \sqrt {\frac {a^{3}}{d^{2}}} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}}\right )} e^{\left (-i \, d x - i \, c\right )}}{a}\right ) - \frac {1}{2} \, \sqrt {\frac {a^{3}}{d^{2}}} \log \left (16 \, {\left (3 \, a^{2} e^{\left (2 i \, d x + 2 i \, c\right )} + 2 \, \sqrt {2} {\left (d e^{\left (3 i \, d x + 3 i \, c\right )} + d e^{\left (i \, d x + i \, c\right )}\right )} \sqrt {\frac {a^{3}}{d^{2}}} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} + a^{2}\right )} e^{\left (-2 i \, d x - 2 i \, c\right )}\right ) + \frac {1}{2} \, \sqrt {\frac {a^{3}}{d^{2}}} \log \left (16 \, {\left (3 \, a^{2} e^{\left (2 i \, d x + 2 i \, c\right )} - 2 \, \sqrt {2} {\left (d e^{\left (3 i \, d x + 3 i \, c\right )} + d e^{\left (i \, d x + i \, c\right )}\right )} \sqrt {\frac {a^{3}}{d^{2}}} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} + a^{2}\right )} e^{\left (-2 i \, d x - 2 i \, c\right )}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)*(a+I*a*tan(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

sqrt(2)*sqrt(a^3/d^2)*log(4*(a^2*e^(I*d*x + I*c) + (d*e^(2*I*d*x + 2*I*c) + d)*sqrt(a^3/d^2)*sqrt(a/(e^(2*I*d*
x + 2*I*c) + 1)))*e^(-I*d*x - I*c)/a) - sqrt(2)*sqrt(a^3/d^2)*log(4*(a^2*e^(I*d*x + I*c) - (d*e^(2*I*d*x + 2*I
*c) + d)*sqrt(a^3/d^2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1)))*e^(-I*d*x - I*c)/a) - 1/2*sqrt(a^3/d^2)*log(16*(3*a^
2*e^(2*I*d*x + 2*I*c) + 2*sqrt(2)*(d*e^(3*I*d*x + 3*I*c) + d*e^(I*d*x + I*c))*sqrt(a^3/d^2)*sqrt(a/(e^(2*I*d*x
 + 2*I*c) + 1)) + a^2)*e^(-2*I*d*x - 2*I*c)) + 1/2*sqrt(a^3/d^2)*log(16*(3*a^2*e^(2*I*d*x + 2*I*c) - 2*sqrt(2)
*(d*e^(3*I*d*x + 3*I*c) + d*e^(I*d*x + I*c))*sqrt(a^3/d^2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1)) + a^2)*e^(-2*I*d*
x - 2*I*c))

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \left (i a \left (\tan {\left (c + d x \right )} - i\right )\right )^{\frac {3}{2}} \cot {\left (c + d x \right )}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)*(a+I*a*tan(d*x+c))**(3/2),x)

[Out]

Integral((I*a*(tan(c + d*x) - I))**(3/2)*cot(c + d*x), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)*(a+I*a*tan(d*x+c))^(3/2),x, algorithm="giac")

[Out]

integrate((I*a*tan(d*x + c) + a)^(3/2)*cot(d*x + c), x)

________________________________________________________________________________________

Mupad [B]
time = 4.09, size = 76, normalized size = 0.96 \begin {gather*} -\frac {2\,\mathrm {atanh}\left (\frac {\sqrt {a^3}\,\sqrt {a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}}}{a^2}\right )\,\sqrt {a^3}}{d}+\frac {2\,\sqrt {2}\,\mathrm {atanh}\left (\frac {\sqrt {2}\,\sqrt {a^3}\,\sqrt {a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}}}{2\,a^2}\right )\,\sqrt {a^3}}{d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(c + d*x)*(a + a*tan(c + d*x)*1i)^(3/2),x)

[Out]

(2*2^(1/2)*atanh((2^(1/2)*(a^3)^(1/2)*(a + a*tan(c + d*x)*1i)^(1/2))/(2*a^2))*(a^3)^(1/2))/d - (2*atanh(((a^3)
^(1/2)*(a + a*tan(c + d*x)*1i)^(1/2))/a^2)*(a^3)^(1/2))/d

________________________________________________________________________________________